Theory of Inventive **Problem Solving (TRIZ)**

Problem

How to identify ideas to solve a problem?

Difficulty

Work with an SME

- TRIZ is a problem-solving tool obtained from invention patterns in the patent literature.
- TRIZ's approach is that a solution, for something close to your problem, has already been found. The goal is to find that solution and adapt it to your problem.
- Modern TRIZ uses "76 standard solutions."
- (OLD) TRIZ easier to describe & illustrate identified technical & physical contradictions involving "39 universal features." All solutions are then one or more of the "40 inventions."

39 Universal Features

- 1. Weight of moving object
- 2. Weight of stationary object
- 3. Length of moving object
- 4. Length of stationary object
- 5. Area of moving object
- 6. Area of non-moving object
- 7. Volume of moving object
- 8. Volume of stationary object
- 9. Speed
- 10. Force

- 38. Extent of automation
- 39. Productivity

40 Invention Principles

- 1. Segmentation
- 2. Taking out
- 3. Local Quality
- 4. Asymmetry
- 5. Merging
- 6. Universality
- 7. Nested doll
- 8. Anti-weight
- 9. Preliminary anti-action
- 10. Preliminary action
- 39. Inert atmosphere
- 40. Composite materials

problem

Solution concepts (OLD) Problem with **TRIZ** "contradictions" Specific solution **Process**

- Create a specific problem statement.
 - Identify a contradiction among the 39 universal features. That is, identify contradiction between features (A) and (B).
- Create **generic problem** statement: 2.
 - Want to change (A) yet (B) deteriorates
- Use contradiction table to identify which of the generic solutions, among the 40 invention **principles**, eliminates the contradiction
- **Brainstorm** the generic solutions to **create** potential solutions for your problem
- Evaluate the potential solutions

solution

TRIZ (OLD) – Example – Improving a Beverage Can

- (1) **Problem**: Want to <u>improve</u> can wall thickness subject to <u>undesirable</u> effect of stress on can wall
- → A=("#4, length of a stationary object")
- → B=("#11, stress")
- (2) Look up (#4,#11) in universal "contradictions table" (upper left corner shown below) to find applicable invention principles: {1, 14, 35}
- 1 → Segmentation
- 14 → Spheroidality
- 35 → Change physical or chemical properties

Worsening Feature													
Features	1	2	3	4	5	6	7	8	9	10	11	12	
1: Weight of moving object	*	-	15 8 29 34	-	29 17 38 34	,	29 2 40 28	-	2 8 15 38			10 14 35 40	_
2: Weight of stationary	-	*	-	10 1 29 35	-	35 30 13 2	-	5 35 14 2	-			13 10 29 14	2
3: Length of moving object	8 15 29 34	-	*	-	15 17 4	-	7 17 4 35	-	13 4 8	17 10	18	18 1029	1
4: Length of stationary object	-	35 28 40 29	-	*	-	17 7 10 40	•	35 8 2 14	-	28 1	1 14 35	3 14 15 7	3
5: Area of moving object	2 17 29 4	-	14 15 18 4	-	*	-	7 14 17 4	-	29 30 4 34			5 34 29 4	1
6: Area of stationary	-	30 2 14 18	-	26 7 9 39	-	*	-	-	-		10 15 36 37	-	2
7: Volume of moving object	2 26 29 40	-	17 435	-	17 417	-	*	-	29 4 38 34	15 35 36 37	-	1 15 29 4	2
R: Volume of stationary	-	35 10	19 14	35 8	-	-	-	*	_	2 18	24 35	72	3,

Cell at (row 4, column 11) has 3 entries: invention principles {1, 14, 35}

- · https://commons.wikimedia.org/wiki/File:Soft_Drink.svg
- https://commons.wikimedia.org/wiki/File:Titanium.svg

(3) For each invention principle, look up description for inspiration. For example:

Invention principle #1: Segmentation Principle

- Divide an object into independent parts.
 - Replace mainframe computer by personal computers.
 - Replace a large truck by a truck and trailer.
 - Use a work breakdown structure for a large project
- Make an object easy to disassemble.
 - Modular furniture
 - Quick disconnect joints in plumbing
- Increase the degree of fragmentation or segmentation.
 - · Replace solid shades with Venetian blinds.
- **(4)** Brainstorm on each of the 3 suggested invention principles to determine a solution.

#1 Segmentation Principle

 Make the can wall corrugated – increases material for the same burst strength.

#14 Spheroidality Principle

 Remove corners from the can, make it with rounded walls or make it a sphere – reduces material for the same burst strength.

#35 Change physical or chemical properties

- Make the can out of a stronger or lighter material.
 Changes amount of material needed, and weight, for the same burst strength.
- (5) Possible results

О

TRIZ - Notes

Slide 1

- 1. TRIZ was invented by Genrich Altshuller and his colleagues, beginning in 1946.
- The main value of TRIZ is that it can speed up the process of finding solutions to complicated problems.
- 3. Benefits of TRIZ
 - A. You don't need to reinvent the wheel
 - B. Quicker path to solution
 - C. Based on engineering solutions
- 4. Among all the TRIZ tools, contradiction analysis is the most frequently used method to address problems needing to eliminate a problem's contradictions.
- 5. TRIZ assumes that every technological system follows the same "evolutionary laws." There are 9 laws in 3 categories of laws: Static, Kinematic, and Dynamic.
- ARIZ (algorithm of inventive problems solving) is a 9 step process with about 85 procedures to solve contradictions. It improves on other TRIZ tools (e.g., Sufield analysis, 40 inventive principles). It is challenging to describe in a few sentences.

Slide 2

- The straightforward steps shown are for OLD TRIZ
 - A. Identify contradictions of universal features
 - B. Use the contradictions table to find potential solutions
 - C. Brainstorming using those potential solutions
- 2. The problem statement said "Improve can wall thickness" which could mean increasing or decreasing the material used in the can wall.