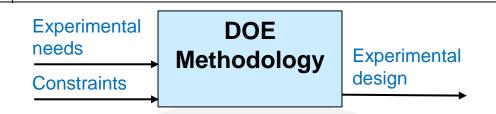

Design of Experiments (DOE)

- **Design of Experiments** (DOE) is a cost effective statistical approach that quantifies the effect of inputs on outputs.
- DOE makes specific changes to inputs and observes the resulting outputs.
- This is the system

- **Problem** find inputs to minimize (say) the observables, using as few tests as possible.
- Solution use the model below observables depend on the inputs, with (usually) the earlier terms being more important than later terms:



Problem

How to determine the factors controlling an output?

Difficulty

Work with an SME

- 1. Define the test objective(s)
 - What is the overall problem?
- 2. Select and quantify the critical response(s)
 - What observables are of concern?
- 3. Design the experiment (incorporate features such as randomization, replication, and blocking)
 - Define all the inputs for each test
- 4. Perform all the tests and collect the data
- 5. Analyze the data (use a SW package)
- 6. Interpret the results
- 7. Verify the predicted outcome

Terminology

- Each input has "levels" (perhaps 3 different values for X₁ and 4 different values for X₂).
- A "full factorial design" has a test for every possible combination of levels.
- A "partial or fractional factorial design" uses a subset of the tests in the full factorial design.

Copyright © 2022 Dan Zwillinger. All rights reserved.

DOE – Example – Golf score

Example from: Jack B. ReVelle, *Manufacturing Handbook of Best Practices: An Innovation, Productivity, and Quality Focus,* https://books.google.com/books?id=_EfMBQAAQBAJ&pg=PP5

(1) Want to minimize a golf score based on the following 7 controllable inputs. (Note that each input has 2 levels.)

	Inputs	Level (-1)	Level (+1)
Α	Age of clubs	Old	New
В	Time of day	AM	PM
С	Use golf cart	No	Yes
D	Practice at driving range	Yes	No
Ε	Drink during game	Yes	No
F	Type of ball	Wilson	Titleist
G	Use of caddy	Yes	No

(3) Convert to input levels and perform the experiments. Potential observable values are shown.

			Golf score						
		Α	В	С	D	Ε	F	G	Y ₁
	#1	Old	AM	No	Yes	Yes	Wilson	Yes	84
	#2	Old	AM	Yes	Yes	No	Titleist	No	96
ent	#3	Old	PM	No	No	Yes	Titleist	No	89
ime	#4	Old	PM	Yes	No	No	Wilson	Yes	97
Experiment	#5	New	AM	No	No	No	Wilson	No	94
ExI	#6	New	AM	Yes	No	Yes	Titleist	Yes	91
	#7	New	ΡM	No	Yes	No	Titleist	Yes	94
	#8	New	PM	Yes	Yes	Yes	Wilson	No	92

Copyright © 2022 Dan Zwillinger. All rights reserved.

(2) A full factorial seven factor design at 2 levels has $2^7=128$ experiments. Instead, use 8 experiments:

			I	npı	uts	(en	coc	led)	Observation				
		Α	В	С	D	Ε	F	G	Y	1	Y ₂	Y ₃	\mathbf{Y}_4	
		#1	-1	-1	-1	-1	-1	-1	-1					
		#2	-1	-1	1	-1	1	1	1					
	ent	#3	1	1	-1	1	-1	1	1		Observed			ed
	Experiment	#4	-1	1	1	1	1	-1	-1		values go			ю
	per	#5	1	-1	-1	1	1	-1	1		I	here		
	EX	#6	1	-1	1	1	-1	1	-1					
		#7	1	1	-1	-1	1	1	-1					
		#8	1	1	1	-1	-1	-1	1					

(4) A simple analysis finds the most important inputs (to leading order) – these cause the largest change.

	Inputs	Levels	Totals	Means	Effect	
^	Ago of clubs	Old	366	91.50	1.25	
A	Age of clubs	New	371	92.75		
D	Time of day	AM	365	91.25	1.75	
D	Time of day	PM	372	93.00		
c Us	Use golf cart	No	361	90.25	3.75	
		Yes	376	94.00		
n	Practice at driving range	Yes	366	91.50	1.25	
U		No	371	92.75	1.25	
-	Drink during game	Yes	356	89.00	6.25	
E		No	381	95.25		
E	Type of ball	Wilson	367	91.75	0.75	
F		Titleist	370	92.50		
6	lies of and du	Yes	366	91.50	1.25	
9	Use of caddy	No	371	92.75	1.25	

DOE – Notes

Slide 1

- 1. The goal of DOE is to obtain useful results using a minimal number of tests.
- 2. Inputs are also called "factors".
- 3. Use SMEs and SW tools to find a test plan.
- 4. The tests should be designed to capture the expected terms that are important in the input/output relationship which may be the linear terms (the first term after the constant) or the higher order terms (the later terms)
- 5. The "one factor at a time" approach is inefficient compared to changing multiple factor levels simultaneously.
- 6. Usually, an initial "screening design" is used to reduce a long list of potentially important factors and interactions to only a few important effects.
- 7. Selecting or creating an appropriate partial or fractional factorial design
 - A. depends on how many terms in the model are anticipated to be important
 - B. depends on many other factors, such as possible relationships between the inputs
 - C. is something of an art!

Slide 2

- 1. In this example the golf score is to be minimized.
- The chosen design has only 8 tests; this is far fewer than the 128 in the full factorial design. For this example, that few tests may be adequate.
 - The resulting predictions, that drinking and golf cart usage are the most important factors, should be verified
- 3. Note that, for the tests performed, each level for each input appears exactly four times.